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Abstract

One method to consists of predict call option prices is the Black-Scholes
equation. However, that is utilizing for predicting European call option
prices not American call option prices. The work done consisted of util-
itizing regression models to predict call option prices utilizing known in-
formation from the New York Stock Exchange (NYSE)

1 Introduction

In finance, an option is a financial contract in which the buyer has the right,
but not the obligation to buy or sell an agreed upon price on or before a spe-
cific data. The contract to buy an option is a call option. The contract to
sell an option is a put option. These two are related by put-call parity. The
agreed upon price is the strike price. The date to decide whether or not the
option by is the exercise date. There are two types different styles of options
American and European. Owners of a European style options may exercise
them only at expiration. Owners of American style options may exercise them
at and before expiration. For predicting the price of European options, Black
Scholes equation is used by some investors. However, this is only useful as an
approximation for the option price. Also, there isn’t an equivalent equation
to the Black-Scholes equation for predicting American option prices. This than
leads into developing regression models to predict call option price. This is done
utilizing linear regression models and non-parametric regression models. The
non-parametric regression models consist of generalized additive model (GAM),
projection pursuit regression (PPR), regression trees, and random forest. The
predictors consist of the strike price of the option, the current price of the stock,
expiration time and the historical volatility, which is how much the option price
varied over the last two months. The response is the option price. The data is
taken from the New York Stock Exchange (NYSE).

2 Methods

2.1 Linear Regression Models

Linear regression models consist of modeling the response as a linear function
of the predictors. y = By + >_ Bixz; + . Where y is the predicted response,



the B;’s are the parameters, the x;’s are the predictors, and ¢ is the residual
error. One of the ways to determine if a linear regression model would work is
by examining a scatterplots of the predictors and the response,in addition to
their log transformations.

2.2 GAM Models

GAM models consist of modeling the response as a linear combination of func-
tions of a single predictor. y = Bo+>_ Bifi(x;) 4+ € This model tested all possible
combination of predictors for determining the response, in addition to their log
transformations.

2.3 PPR Models

PPR models are a generalization of GAM models. In this models functions of a
linear combination of predictors utilized to predict the response, in addition to
their log transformations. y = 8o+ B; fi(al z) +€ Where y is the response, 3;’s
are the parameters, «;’s are the projection direction vectors, and € is the residual
error.

2.4 Regression Tree Models

Regression Trees consist of partioning the data into intelligently chosen subsets,
and in each subset the response will be modeled as the mean. This model tested
all possible combination of predictors for determining the response, in addition
to their log transformations.

2.5 Random Forest Models

The Random Forest model consist of generating 500 new data sets from the
original data set. Then a tree is constructed on each of these data sets. The
final prediction is then obtained by averaging predictions from all 500 trees. This
was tested for up to two predictors, in addition to their log transformations.



3 Plots

3.1 Scatterplots

3.1.1 Current Price vs Option Price
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3.1.2 Current Price vs log(Option Price)
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3.1.3 log(Current Price) vs Option Price
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3.1.4 log(Current Price) vs log(Option Price)
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3.1.5 Strike Price vs Option Price

O
O O
'Ta
%— 0
O
b
L
= o
=2 e
o 9o _|
o <
s
o © “
Q4
O
O
o — o ° o

0 100 300 200 700

strike



3.1.6 Strike Price vs log(Option Price)
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3.1.7 log(Strike Price) vs Option Price

60 g0
I
'Cl

optprice
40
o

o

20
|

log(strike)



3.1.8 log(Strike Price) vs log(Option Price)
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3.1.9 Historical Volatility vs Option Price

o
o |
0o
[
o i
2
LI ¥]
L]
o o
= O
o
L]
]
i
|

histvol

11




3.1.10 Historical Volatility vs log(Option Price)
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3.1.11 log(Historical Volatility) vs Option Price
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3.1.12 log(Historical Volatility) vs log(Option Price)
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3.1.13 Expiration Time vs Option Price
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3.1.14 Expiration Time vs log(Option Price)
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3.1.15

optprice

log(Expiration Time) vs Option Price
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log(Expiration Time) vs log(Option Price)

3.1.16
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3.2 PPR Models

3.2.1 log(option price) current price + strike price
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3.2.2 log(option price) log(current price)+log(strike price)
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3.3 Random Forest Models
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4 Results

4.1 Linear Regression Models

It’s apparent from the scatterplots that there isn’t a linear relationship between
the expiration time and the option price. A lack of a linear relation ship between
the historical volatility and the option price. With regard to the current strike
and strike price, they both have a slight linear relationship with the option
price. However, it’s apparent that both of them don’t have a strong enough
linear relationship with the option price. As a result, linear regression models
aren’t a good choice for modeling option prices.

4.2 GAM Models

A number of the tested models failed at predicting the response. There were
some models that initially appeared to work, however, there when tested on
another data set the model failed at predicting the response. This was do to
the model being heaviliy overfitted.

4.3 Projection Pursuit Regression Models

The ”good” models worked best for predicting smaller option prices, This is
due to the data posssesing more information for the smaller option prices. The
two models both consist of first predicting the log of the option prices. The
predictors used in the first model are the current price and the strike price. The
predictors used in the second model consists of the log transformations of both
the current price and the strike price of the stock in question.

4.4 Regression Tree Models

A number of the tested models failed at predicting the response. There were
some models that initially appeared to work, however, there when tested on
another data set the model failed at predicting the response. This was do to
the model being heaviliy overfitted.

4.5 Random Forest Models

The model that worked tended to underestimate the option price. This model
consisted of predicting the log transformation of the option price based on the
log transformations of both the current price and strike price of the stock in
question

5 Conclusions
In conclusion, the best models for predict call option prices are PPR and Ran-
dom Forest. Future work would consist of improving the PPR models, using

different non-parametric models, and factoring the volume of options sold from
the amount avalable.
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